Challenges, Potentials and Perspectives of Information Management in Ship Management

Tanker Operator Conference, Hamburg, 17.09.2013

Ole John, Fraunhofer CML

Introduction

1

Challenges

Potentials and Perspectives

1

2

3

Introduction

Challenges

Potentials and Perspectives

Fraunhofer-Gesellschaft

- Largest organization for applied research in Europe
- Contract research for direct benefit of business and in the interest of the society
 - 2/3 of research revenue is derived from contracts with industry and from publicly financed research
 - 1/3 is contributed by German federal and state governments in the form of institutional funding
- 80+ research institutions
- 22 000 employees
- 1,9 billion Euro (2012) research budget

Fraunhofer Center for Maritime Logistics and Services

Logistics innovations within the maritime industry

© Fraunhofer

Decision making requires information

"Shipping is complex business. Scheduling, network operations, intermodal transit, equipment availability, customs, ancient maritime laws, labyrinthine documentation, hurricanes, earthquakes, piracy, war, fluctuating oil prices, insurance premiums, canal tolls..."

Eivind Kolding, Maersk Line CEO

Maersk's Need for Change Manifesto, June 2011

The underlying challenge of decision making is the acquisition of information

Information management

"Information management is the economic *planning*, *purchasing*, *converting*, *distribution* and *allocation* of information as resource for *preparation* and *support* of decisions as well as the design of the necessary *framework requirements* (Voß 2011)."

The alignment of information needs and provided information is already challenging for one sub-area in ship management

2

3

Einführung

Challenges

Potentials and Perspectives

Challenge 1: Diversity of Tasks

Challenge 2: Market challenges

Market pressure increases the willingness to embrace change

Increase of total shipping operating costs (%)

Drewry, Ship Operating Costs 2010-2011

© Fraunhofer

Study – Best Practice Ship Management 2013 (BSPM 2013)

Objectives:

 Gather best practices in the different areas of ship management: (1) Crewing,
(2) Technical Management, (3) Financial Management, (4) Quality & Safety Management, (5) Procurement.

Tasks:

- Analysis of status quo by interviewing decision makers on a global scale
- Interviews have been backed up by the expertise of GL and CML
- Outcome:
 - Best practice ideas and best practice examples of ship managers worldwide.

BPSM 2013 – Main Challenges and Reasons

Main Challenges

Fraunhofer

Study Best Practice Ship Management 2013

BPSM 2013 - Expectations regarding the role of ICT in implementing best practice

Main Challenges

Main Opportunities

Study Best Practice Ship Management 2013

Challenge 3: Variety of systems

Rapidly growing number of media and types of information systems

Core Modules of Fleet Management Systems

© Fraunhofer

Study - Fleet management systems 2013

Objectives:

- Provide an overview about fleet management systems and their functions
- Tasks:
 - Enhance transparency and collect information about producers, systems and their functions
 - Identification of software systems and modules
- Outcome:
 - Extensive product overview
 - Market trends

ISBN 978-3-8396-0533-2

Agenda

Introduction

Challenges

2

Potentials and Perspectives

Potentials and Perspectives

Future oriented Ship Management

Information management

Cooperation

Efficient operation of ships

Potential 1: Efficient operation of ships

- Procedural: Condition Based Monitoring (CBM) Lifecycle Management (LCM)
- Operativ: Slow Steaming Weather Routing
- Technical: Ship Design

Potential 2: Cooperation

- E-Commerce (E-Marketplace)
- Standards (Data Formats)
- Single Window

Potential 3: Information management

- Use of various information systems
- Control of global information tide
- Using of relevant information for decision support

Decision support through relevant Information

- **1.** Reactive Preparation
- Target-oriented records
- Meaningful analyses of past data

- 2. Active support
- Supply of planning functions and
- Prediction modells

Decision support: (1) crew requirement planning

© Fraunhofer

Major goal of crew requirement planning is to align crew demand generated by the (future) fleet with crew supply

DEMAND

How many seafarers needed to fulfill safe operations 24h / 365d?

depends on

- number of ships
- ship classes / ship types
- safe manning certificates
- leave time allowances
- sick leave
- process / planning inefficiencies

SUPPLY

How many seafarers will be available on the company roster?

depends on

- current seafarer base
- promotions
- fluctuations

...

FutureFutureDemandSupply(e.g. measured in FTE fora full year in two years from today)

CMLs analytical approach based on demand analysis and supply projection

EXAMPLE: Master, Eastern-European Tariff, Tanker, Class XY

Crew Requirement Planning Cube used to allow analysis and planning on any granularity level

John; Gailus 2013: Model for a specific decision support system for crew requirement planning in ship management

Fraunhofer

© Fraunhofer

Analytical approach can diclose efficiency potentials already in the analysis phase

DISGUISED EXAMPLE

average duration per activity [days]

Activity Analysis of existing seafarers

Share of time spent with activity [%]

Process inefficiencies could be dicovered through data analysis

Decomposing activities allows for benchmarking (int./ext.) to quantify potential

Decision support: (2) crew scheduling planning

Project EIS – Excellence Initiative Ship Management

- Goal: Development of an industry solution for ship management
- Funding: EFRE (EU, Hamburg)
- Period: 2/2012 8/2014 (30 Monate)

Output of crew scheduling in ship management

 \rightarrow For every position on every ship:

Assignment of seafarers for a specific time period

D. Vaclev J. Below M. Smirnow A. Titow A. Popow Master I. Jacek I. Nikitin A. Iljin P. Kusmin Chief Officer A. Lasarew J. Baranow 2nd Officer P. Estrada S. Pelaez T. Ramos T. Aquino F. Villa M. Quezon **3rd Officer** Chief Engineer U. Lopez F. Roxas Z. Tolentino J. Binay W. Aguinaldo C. Romulo I. Remonde 2nd Engineer Y. Nowikow P. Petrow 3rd Engineer 4th Engineer A. Kusmin J. Gussew **B.** Sorrokin 2 9 8 Ż 10 11 Δ 5 12 Month

Example: Cap Roberta

Challenges of crew scheduling in ship management

- Various requirements
- Large problem sizes

→ Large ship managers have hundreds of ships and thousands of seafarers

- Long term planning → It is done mostly for short term
- Less reliability of seafarers
- Feasibility check to manage new ships
 - → It is done mostly through a rough estimation

© Fraunhofer

Sequential approach

Sequential Approach – Contract Period Construction

Sequential Approach – Crew assignment

contract period construction

Master	D. Vaclev	J. Below	I. Jacek	M. Sr	mirnow	A. Po	pow A.	Titow
Chief Officer	l. Nikitin	A. Iljin	J. Bara	now	A. Lasarev	v	P. Kusmin	
2nd Officer		P. Estrada		S. Pelaez			T. Ramos	
3rd Officer	T. Aquino	F. ∖	/illa		M. Que	zon		
Chief Engineer	U. Lopez		F. Roxa	is		Ž	Z. Tolentino	
2nd Engineer	J. Binay	W. Agu	C	. Romulo		I. Remonde		
3rd Engineer		Y. Now		P. Petrow				
4th Engineer	A. Kusmin	J. Gussew				B. Sorrokin		
() 1	2 3	4 5 M	67 onth	8	9	10 11	12

Contract Period Construction Problem - Constraints

Constraint 1: A Crew Change can only be conducted in a port

Contract Period Construction Problem - Constraints

Constraint 2: Minimum time interval between some crew changes

Contract Period Construction Problem - Constraints

Constraint 3: Maximum deviation from a fixed contract duration

Contract Period Construction Problem

Further possible constraints:

- The number of position changes in the same port has to be less than a maximum value.
- The number of crew changes for one ship has to be less than a maximum value.

Possible objective values:

- Minimize the number of crew changes (crew change fix costs)
- Minimize the deviation from the fixed contract durations

Crew assignment - Constraints

Constraint 1: Extended overlap for new seafarers in rank or in the company

1 day overlap

Master	D. Vaclev	J. Below	l. Jacek	M. Smirn	ow	A. Popow	A. Titow	
Chief Officer	I. Nikitin	A. Iljin	J. Barano	ow A.	Lasarew	P. Ku	smin	
2nd Officer		P. Estrada		S. Pelaez		T. Ra	imos	
3rd Officer	T. Aquino	F. Vil	F. Villa			M. Quezon		
Chief Engineer	U. Lopez		F. Roxas			Z. Tole	entino	
2nd Engineer	J. Binay	W. Aguir	naldo	C. R	omulo	I. F	I. Remonde	
3rd Engineer		Y. Nowik	ow		P. Petrow			
4th Engineer	A. Kusmin	J. Gussew			:	B.	B. Sorrokin	
() 1	2 3 4	-	6 7 onth	8	9 10	11 12	

Crew assignment - Constraints

Constraint 2: Minimum experience times for specific rank combinations

Crew assignment - Constraints

* depends on the contract duration

Crew Assignment Problem

Further possible constraints:

- Every seafarer could be assigned only to a specific ship type (container, bulker ...)
- Earliest contract start dates of the seafarer have to be considered
- Preferred assignment of permanently employed seafarers

Possible objective values:

- Minimize the deviation of seafarer experience times among the ships
- Minimize the deviation of real leave times from optimal leave times

Benefits of mathematical optimization for crew scheduling

- Optimized crew scheduling for the whole fleet of ships
- Possibility to create a reliable long term plan (e.g. one year)
- Increase the reliability of the seafarers through a reliable crew schedule and vice versa
- Possibility to conduct strategic capacity planning

© Fraunhofer

Perspectives

http://en.wikipedia.org/wiki/William_Gibson

http://www.shippingscenarios.wartsila.com/

© Fraunhofer

Thank you very much for your attention!

Dipl.-Päd. Ole John, MBA ole.john@cml.fraunhofer.de Tel. +49 40 42878 4461

Fraunhofer CML TUHH Technische Universität Hamburg-Harburg

[Quelle: Haten Ham Lindner]